
1.1kW~7.5kW

9.2kW~22kW

Ambient Temperature

Max. Ambient temperature: +40°C. Ambient temperature above 40°C, or installation at altitude of more than 1000 m above sea level, require the use of an oversize motor. Because of low air density and poor cooling effects, the motor output power P_2 will be decreased. See the picture.

For example, when the pump is installed at altitude of more than 3500 m above sea level, P_2 will be decrease to 88%. When the ambient temperature is 70°C, P_2 will be decreased to 78%.

Application

- Water supply: filtration and transfer at waterworks, regional water supply and pressure boosting in main pipe
- Industrial pressure boosting: Water system, cleaning system
- Industrial water supply: boiler feeding, cooling system, air conditioning, transportation of light acid and alkali liquid
- Water treatment: distillation systems, separators, swimming pools
- Agricultural irrigation, petrochemical industry, medicine and sanitation, etc.

Operating Conditions

- Thin, clean, non-flammable and explosive, not containing the liquid with solid particles and fibers
- Liquid temperature: -15°C - +80°C
- Flow range: 0.7 - 132 m³/h
- Head range: 9 - 58 m
- Ambient temperature range: -15°C - +40°C
- Max. operating pressure: 10 bar
- Altitude: up to 1000 m
- Liquid PH value: 3 - 9
- Max. ambient temperature: +40°C

Motor

- IE2 Motor (IE3 motor available on request for power $\geq 9.2\text{kW}$)
- Totally enclosed & fan-cooled
- Enclosures class: IP55
- Insulation class: F

Identification Codes

XZS 65- 50- 160 / 40

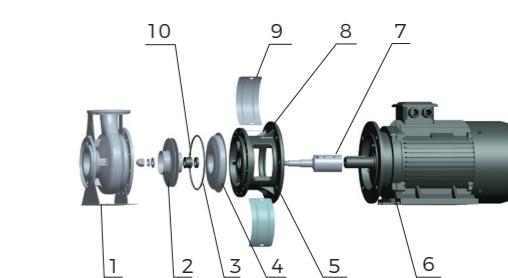
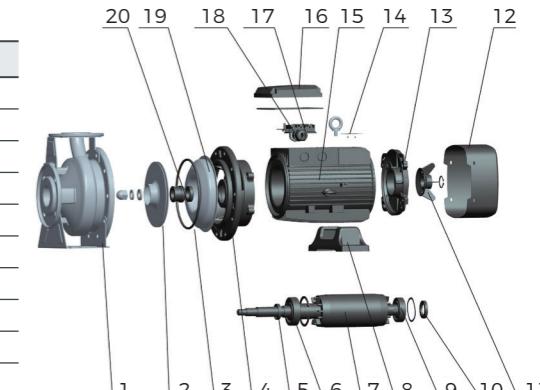
Legend:

- Rated Power (x100 W)
- Impeller Nominal Diameter (mm)
- Outlet Diameter (mm)
- Inlet Diameter (mm)
- LEO Stainless Steel Standard Centrifugal Pump

Accessories on Request

AISI304 Threaded flange

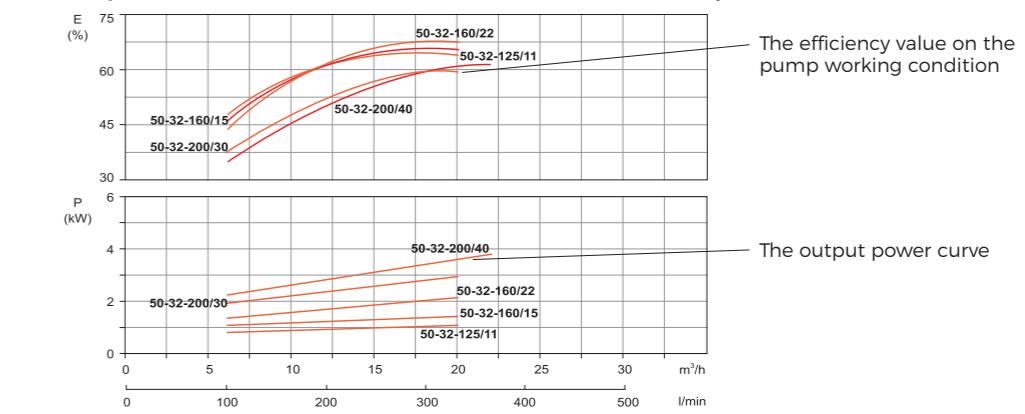
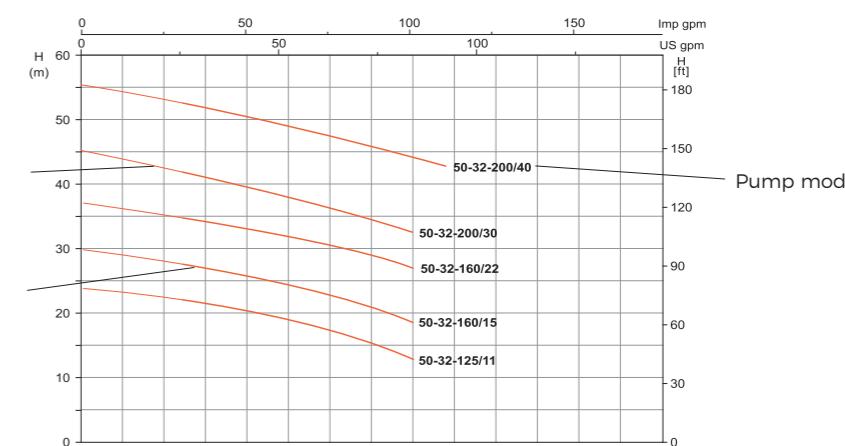
Flange gasket



Material Table

1.1kW ~ 7.5kW

No.	Part	Material
1	Pump body	AISI 304
2	Impeller	AISI 304
3	O-ring	NBR
4	Support	HT200
5	Oil seal	
6	Bearing	
7	Rotor	
8	Stand	HT200
9	Bearing	
10	Oil seal	
11	Fan	PP
12	Fan cover	PP-GF15
13	Rear cover	ZL102
14	Nameplate	AISI 304
15	Stator	
16	Terminal cover	ZL102
17	Terminal board	
18	Cable holder	
19	Support cover	AISI 304
20	Mechanical seal	

9.2kW ~ 22kW



No.	Part	Material
1	Pump body	AISI 304
2	Impeller	AISI 304
3	O-ring	NBR
4	Support cover	AISI 304
5	Support	HT200
6	Motor	
7	Rotor	AISI 304/45
8	Nameplate	AISI 304
9	Guard plate	AISI 304
10	Mechanical seal	

How to Read the Curve Charts

The thin curves indicate the duty range where long-time operating is not allowed

The bold curves indicate the duty range where long-time operating is permitted for best efficiency

